How do you integrate (7x-2)/((x-3)^2(x+1)) using partial fractions?

1 Answer
Nov 3, 2017

Write the partial fractions equation:

(7x-2)/((x-3)^2(x+1)) = A/(x+1)+B/(x-3)+C/(x-3)^2

Multiply both sides by (x-3)^2(x+1):

7x-2 = A(x-3)^2+B(x-3)(x+1)+C(x+1)

Let x = -1

7(-1)-2 = A(-1-3)^2+B(-1-3)(-1+1)+C(-1+1)

-9 = 16A

A = -9/16

7x-2 = -9/16(x-3)^2+B(x-3)(x+1)+C(x+1)

Let x = 3

7(3)-2 = -9/16(3-3)^2+B(3-3)(3+1)+C(3+1)

#C = 19/4

7x-2 = -9/16(x-3)^2+B(x-3)(x+1)+19/4(x+1)

Let x = 0

7(0)-2 = -9/16(0-3)^2+B(0-3)(0+1)+19/4(0+1)

-2 = -81/16-3B+19/4(0+1)

B = 9/16

The partial fractions are:

(7x-2)/((x-3)^2(x+1)) = -9/16 1/(x+1)+9/16 1/(x-3)+19/4 1/(x-3)^2

Integrate:

int (7x-2)/((x-3)^2(x+1)) dx = -9/16 int 1/(x+1) dx+9/16 int 1/(x-3) dx +19/4 int 1/(x-3)^2 dx

The integrals are trivial:

int (7x-2)/((x-3)^2(x+1)) dx = -9/16 lnt|x+1|+9/16 ln|x-3| -19/4 1/(x-3)+ C