How do you integrate (4x^3+2x^2+1)/(4x^3-x) using partial fractions?

1 Answer
Jan 20, 2018

The answer is =x-ln(|x|)+1/2ln(|2x+1|)+ln(|2x-1|)+C

Explanation:

As the degree of the numerator is equal to the degree of the denominator, perform a polynomial long division

(4x^3+2x^2+1)/(4x^3-x)=1+(2x^2+x+1)/(4x^3-x)

=1+(2x^2+x+1)/(x(4x^2-1))

=1+(2x^2+x+1)/(x(2x+1)(2x-1))

Perform the partial fraction decomposition

(2x^2+x+1)/(x(2x+1)(2x-1))=A/(x)+B/(2x+1)+C/(2x-1)

=(A(2x+1)(2x-1)+B(x)(2x-1)+C(x)(2x+1))/(x(2x+1)(2x-1))

The denominators are the same, compare the numerators

2x^2+x+1=A(2x+1)(2x-1)+B(x)(2x-1)+C(x)(2x+1)

Let x=0, =>, 1=-A, =>, A=-1

Let x=-1/2, =>, 1=B

Let x=1/2, =>, C=2

Therefore,

(4x^3+2x^2+1)/(4x^3-x)=1-1/(x)+1/(2x+1)+2/(2x-1)

int((4x^3+2x^2+1)dx)/(4x^3-x)=int1dx-int(1dx)/(x)+int(1dx)/(2x+1)+int(2dx)/(2x-1)

=x-ln(|x|)+1/2ln(|2x+1|)+ln(|2x-1|)+C