How do you integrate 4/((x(x^2+4)) using partial fractions?

1 Answer
Mar 6, 2017

Please see the explanation.

Explanation:

Write the equation for the expansion:

4/(x(x^2+4))= A/x+(Bx)/(x^2+4)+C/(x^2+4)

Multiply both sides by x(x^2+4):

4= A(x^2+4)+Bx^2+Cx

Make B and C disappear by letting x = 0:

4= 4A

A = 1

4= 1(x^2+4)+Bx^2+Cx

Let x = 1:

4= 5 +B+C

B + C = -1

Let x = -1:

4= 5 +B-C

B-C = -1

Clearly C = 0 and B = -1:

int4/(x(x^2+4))dx=int1/xdx-intx/(x^2+4)dx

Modify the second integral for a variable substitution:

int4/(x(x^2+4))dx=int1/xdx-1/2int(2x)/(x^2+4)dx

int4/(x(x^2+4))dx=ln(x)-1/2ln(x^2+4)+C