How do you integrate 4 /((x + 2)(x + 3))?

1 Answer
Mar 20, 2018

The answer is =4(ln(|x+2|)-ln(|x+3|))+C

Explanation:

Perform the decomposition into partial fractions

(4)/((x+2)(x+3))=A/(x+2)+B/(x+3)=(A(x+3)+B(x+2))/((x+2)(x+3))

The denominators are the same, compare the numerators

4=A(x+3)+B(x+2)

Let x=-2, =>, 4=A

Let x=-3, =>, 4=-B

Therefore,

(4)/((x+2)(x+3))=4/(x+2)+(-4)/(x+3)

int(4dx)/((x+2)(x+3))=int(4dx)/(x+2)+int(-4dx)/(x+3)

=4ln(|x+2|)-4ln(|x+3|)+C