How do you integrate [((3x^2)+3x+12) / ((x-5)(x^2+9))]dx using partial fractions?

1 Answer
Nov 12, 2016

Please see the explanation

Explanation:

Expand the fraction:

(3x^2 + 3x + 12)/((x - 5)(x^2 + 9)) = A/(x - 5) + (Bx + C)/(x^2 + 9)

Multiply both sides by the left side denominator:

3x^2 + 3x + 12 = A(x^2 + 9) + (Bx + C)(x - 5)

Let x = 5 to make B and C disapper

3(5)^2 + 3(5) + 12 = A(5^2 + 9)

102 = A(34)

A = 3

Substitute 3 for A:

3x^2 + 3x + 12 = 3(x^2 + 9) + (Bx + C)(x - 5)

Let x = 0 to make B disappear:

12 = 3(9) + C(-5)

-15 = -5C

C = 3

Substitute 3 for C:

3x^2 + 3x + 12 = 3(x^2 + 9) + (Bx + 3)(x - 5)

Let x = 1:

3 + 3 + 12 = 3(1 + 9) + (B + 3)(1 - 5)

18 = 30 -4B - 12

B = 0

int((3x^2 + 3x + 12)/((x - 5)(x^2 + 9)))dx = 3int1/(x - 5)dx + 3int1/(x^2 + 5)dx

int((3x^2 + 3x + 12)/((x - 5)(x^2 + 9)))dx = 3ln|x - 5| + 3sqrt(5)/5tan^-1((sqrt(5))x /5) + C