How do you integrate 3x2+2x+4 using partial fractions?

1 Answer
Feb 18, 2017

3x2+2x+4dx=3arctan(x+13)+C

Explanation:

Rather than partial fractions I would use a substitution.
Complete the square at the denominator:

3x2+2x+4dx=3(x+1)2+3dx=dx(x+13)2+1

Now substitute:

t=x+13

dt=dx3

dx(x+13)2+1=3dt1+t2=3arctant+C

and undoing the substitution:

3x2+2x+4dx=3arctan(x+13)+C