How do you integrate (2x^2+4x+12)/(x^2+7x+10) using partial fractions?

1 Answer
Mar 13, 2017

The answer is =2x-14ln(|x+5|)+4ln(|x+2|)+C

Explanation:

The numerator is

2x^2+4x+12=2(x^2+2x+6)

We perform a long division

color(white)(aaaa)x^2+2x+6color(white)(aaaaa)|x^2+7x+10

color(white)(aaaa)x^2+7x+10color(white)(aaaa)|1

color(white)(aaaaaa)0-5x-4

Therefore

(2x^2+4x+12)/(x^2+7x+10)=2(1-(5x+4)/(x^2+7x+10))

We factorise the denominator

x^2+7x+10=(x+5)(x+2)

We can perform the decomposition into partial fractions

(5x+4)/(x^2+7x+10)=(5x+4)/((x+5)(x+2))

=A/(x+5)+B/(x+2)=(A(x+2)+B(x+5))/((x+5)(x+2))

The denominators are the same, we compare the numerators

5x+4=A(x+2)+B(x+5)

Let x=-5, =>, -21=-3A, =>, A=7

Let x=-2, =>, -6=3B, =>, B=-2

So,

(2x^2+4x+12)/(x^2+7x+10)=2(1-(7/(x+5)-2/(x+2)))

Therefore,

int((2x^2+4x+12)dx)/(x^2+7x+10)=2int(1-(7/(x+5)-2/(x+2)))dx

=2intdx-14intdx/(x+5)+4intdx/(x+2)

=2x-14ln(|x+5|)+4ln(|x+2|)+C