How do you integrate #2 / (x(4x-1))# using partial fractions? Calculus Techniques of Integration Integral by Partial Fractions 1 Answer Shwetank Mauria Jun 17, 2016 #int2/(x(4x-1))dx=-2lnx+2ln(4x-1)=2ln((4x-1)/x)# Explanation: Partial fractions of #2/(x(4x-1))# are given by #2/(x(4x-1))hArrA/x+B/(4x-1)# or #2/(x(4x-1))hArr(A(4x-1)+Bx)/(x(4x-1))# or #2/(x(4x-1))hArr(x(4A+B)-A)/(x(4x-1))# i.e. #A=-2# and #4A+B=0# i.e. #B=-4A=8# Hence #2/(x(4x-1))=-2/x+8/(4x-1)# and #int2/(x(4x-1))dx=int(-2/x+8/(4x-1))dx# = #-2lnx+8xx1/4xxln(4x-1)# = #-2lnx+2ln(4x-1)=2ln((4x-1)/x)# Answer link Related questions How do I find the partial fraction decomposition of #(2x)/((x+3)(3x+1))# ? How do I find the partial fraction decomposition of #(1)/(x^3+2x^2+x# ? How do I find the partial fraction decomposition of #(x^4+1)/(x^5+4x^3)# ? How do I find the partial fraction decomposition of #(x^4)/(x^4-1)# ? How do I find the partial fraction decomposition of #(t^4+t^2+1)/((t^2+1)(t^2+4)^2)# ? How do I find the integral #intt^2/(t+4)dt# ? How do I find the integral #int(x-9)/((x+5)(x-2))dx# ? How do I find the integral #int1/((w-4)(w+1))dw# ? How do I find the integral #intdx/(x^2(x-1)^2)# ? How do I find the integral #int(x^3+4)/(x^2+4)dx# ? See all questions in Integral by Partial Fractions Impact of this question 1036 views around the world You can reuse this answer Creative Commons License