How do you integrate (1x^(2)+4x+12)/((x+2)(x^(2)+4)) using partial fractions?

1 Answer
Aug 23, 2017

Write the partial fraction equation:

(x^2+4x+12)/((x+2)(x^2+4)) = A/(x+2) + (Bx)/(x^2+4) + C/(x^2+1)

Multiply both sides by (x+2)(x^2+4):

x^2+4x+12 = A(x^2+4) + (Bx)(x+2) + C(x+2)" [1]"

Make B and C disappear by letting x = -2

(-2)^2+4(-2)+12 = A((-2)^2+4)

8 = A(8)

A = 1

Substitute the value for A into equation [1]:

x^2+4x+12 = (x^2+4) + (Bx)(x+2) + C(x+2)" [2]"

Make B disappear by letting x = 0

0^2+4(0)+12 = (0^2+4) + C(0+2)

8 =2C

C = 4

Substitute the value for C into equation [2]:

x^2+4x+12 = (x^2+4) + (Bx)(x+2) + 4(x+2)" [3]"

Let (x = 1):

1^2+4(1)+12 = (1^2+4) + (B(1))((1)+2) + 4(1+2)

0 = 3B

B = 0

Remove the term for B from equation [3]

x^2+4x+12 = (x^2+4) + 4(x+2)

Divide by (x+2)(x^2+4):

(x^2+4x+12)/((x+2)(x^2+4)) = 1/(x+2) + 4/(x^2+4)" [4]"

Equation [4] gives us the template for the integrals:

int(x^2+4x+12)/((x+2)(x^2+4))dx = int1/(x+2)dx + 4int1/(x^2+1)dx

Both integrals are well known:

int(x^2+4x+12)/((x+2)(x^2+4))dx = ln|x+2| + 4tan^-1(x)+ C