How do you integrate 10/(5x^2-2x^3) using partial fractions?

1 Answer
Feb 2, 2017

The answer is =-2/x+4/5ln(|x|)-4/5ln(|2x-5|)+C

Explanation:

5x^2-2x^3=-x^2(2x-5)

Let's perform the decompostion into partial fractions

10/(5x^2-2x^3)=-10/((x^2(2x-5)))

=A/x^2+B/x+C/(2x-5)

=(A(2x-5)+Bx(2x-5)+Cx^2)/((x^2(2x-5)))

The denpminators are the same, we can compare the numerators

-10=A(2x-5)+Bx(2x-5)+Cx^2

Let x=0, =>, -10=-5A, =>, A=2

Let x=5/2, =>, -10=25/4C, =>, C=-8/5

Coefficients of x^2

0=2B+C, =>, B=-C/2=1/2*8/5=4/5

Therefore,

10/(5x^2-2x^3)=2/x^2+(4/5)/x+(-8/5)/(2x-5)

So,

int(10dx)/(5x^2-2x^3)=2intdx/x^2+4/5intdx/x-8/5intdx/(2x-5)

=-2/x+4/5ln(|x|)-4/5ln(|2x-5|)+C