How do you integrate 1/((x+6)(x^2+3)) using partial fractions?

1 Answer
Nov 5, 2016

1/78ln((x+6)^2/(x^2+3))+2/(13sqrt3)arctan(x/sqrt3)+C

Explanation:

Decomposing the fraction:

1/((x+6)(x^2+3))=A/(x+6)+(Bx+C)/(x^2+3)

So:

1=A(x^2+3)+(Bx+C)(x+6)

1=Ax^2+3A+Bx^2+6Bx+Cx+6C

Sorting by x:

0x^2+0x+1=x^2(A+B)+x(6B+C)+(3A+6C)

Comparing the coefficients:

{(A+B=0),(6B+C=0),(3A+6C=1):}

From the first equation we see that B=-A. Substituting this into the second equation, we see that -6A+C=0. Multiplying the third equation by 2, we see that 6A+12C=2. Adding this to -6A+C=0, we get 13C=2 so C=2/13.

Using this value in the second equation, we see that A=1/39. Thus B=-1/39.

Using these values:

1/((x+6)(x^2+3))=(1/39)/(x+6)+(-1/39x+2/13)/(x^2+3)

1/((x+6)(x^2+3))=1/39 1/(x+6)+1/39(-x+6)/(x^2+3)

So:

I=int1/((x+6)(x^2+3))dx=1/39int1/(x+6)dx+1/39int(-x+6)/(x^2+3)

And:

I=1/39int1/(x+6)dx-1/39intx/(x^2+3)dx+6/39int1/(x^2+3)dx

Letting u=x+6 for the first integral, so that du=dx:

I=1/39int1/udu-1/39intx/(x^2+3)dx+2/13int1/(x^2+3)dx

I=1/39lnabsu-1/39intx/(x^2+3)dx+2/13int1/(x^2+3)dx

For the next integral, let v=x^2+3 so du=2xdx:

I=1/39lnabsu-1/78int(2x)/(x^2+3)dx+2/13int1/(x^2+3)dx

I=1/39lnabsu-1/78int1/vdv+2/13int1/(x^2+3)dx

I=1/39lnabsu-1/78lnabsv+2/13int1/(x^2+3)dx

Before moving onto the next integral, we can do a very sneaky simplification:

I=2/78lnabsu-1/78lnabsv+2/13int1/(x^2+3)dx

I=1/78lnabs(u^2)-1/78lnabsv+2/13int1/(x^2+3)dx

I=1/78lnabs(u^2/v)+2/13int1/(x^2+3)dx

With u=x+6 and v=x^2+3:

I=1/78lnabs((x+6)^2/(x^2+3))+2/13int1/(x^2+3)dx

Note the absolute value bars aren't necessary since the function inside the logarithm is always positive:

I=1/78ln((x+6)^2/(x^2+3))+2/13int1/(x^2+3)dx

For the remaining integral, there are two courses of action. The first would be to use the arctangent integral formula: int1/(u^2+a^2)du=1/aarctan(u/a)+C.

The other, which I prefer since you don't have to remember the formula, is to use trigonometric substitution.

So, for int1/(x^2+3)dx, let x=sqrt3tantheta. Thus dx=sqrt3sec^2thetad theta and:

I=1/78ln((x+6)^2/(x^2+3))+2/13int1/(3tan^2theta+3)(sqrt3sec^2thetad theta)

I=1/78ln((x+6)^2/(x^2+3))+2/(13sqrt3)intsec^2theta/(tan^2theta+1)d theta

Since sec^2theta=1+tan^2theta:

I=1/78ln((x+6)^2/(x^2+3))+2/(13sqrt3)intd theta

From x=sqrt3tantheta we see theta=arctan(x/sqrt3).

I=1/78ln((x+6)^2/(x^2+3))+2/(13sqrt3)arctan(x/sqrt3)+C