How do you integrate 1/(x^3-5x^2) using partial fractions?

1 Answer
May 13, 2016

int1/(x^2(x-5))dx=-1/25lnx+1/(5x)+1/25ln(x-5)

Explanation:

Let us first find partial fractions of 1/(x^3-5x^2)=1/(x^2(x-5) and for this let

1/(x^2(x-5))hArrA/x+B/x^2+C/(x-5) or

1/(x^2(x-5))hArr(Ax(x-5)+B(x-5)+Cx^2)/(x^2(x-5)) or

1/(x^2(x-5))hArr((A+C)x^2+(B-5A)x-5B)/(x^2(x-5)) or

Hence, A+C=0, B-5A=0 and -5B=1 i.e.

B=-1/5, A=1/5B=-1/25 and C=1/25

Hence int1/(x^2(x-5))dx=int[-1/(25x)-1/(5x^2)+1/(25(x-5))]dx

= -1/25intdx/x-1/5intdx/x^2+1/25intdx/(x-5)

= -1/25lnx+1/(5x)+1/25ln(x-5)