How do you integrate 1/[s^2(3s+5)] using partial fractions?
1 Answer
Jun 25, 2016
Split apart the fraction using typical decomposition rules:
1/(s^2(3s+5))=A/s+B/s^2+C/(3s+5)
Multiply through by
1=As(3s+5)+B(3s+5)+Cs^2
Let
1=5B
B=1/5
Let
1=C(-5/3)^2=C(25/9)
C=9/25
Arbitrarily let
1=A(5)(3*5+5)+1/5(3*5+5)+9/25(5)^2
1=A(100)+4+9
-12=100A
A=-3/25
Thus:
1/(s^2(3s+5))=-3/(25s)+1/(5s^2)+9/(25(3s+5))
So:
int1/(s^2(3s+5))ds=-3/25int1/sds+1/5ints^-2ds+9/25int1/(3s+5)ds
Using typical integration rules (don't forget to substitute in the final integral):
=-3/25ln(abss)-1/(5s)+3/25ln(abs(3s+5))+C