How do you graph y=1/2sqrt(x+2), compare to the parent graph, and state the domain and range?

1 Answer
Jul 8, 2018

See answer below

Explanation:

Given: y = 1/2 sqrt(x + 2)

parent function y = sqrt(x)

horizontal shift 2 left, horizontal stretch by 1/2

Find the domain:

The value under the radical must be >= 0:

x + 2 >= 0; " "x >= -2

domain: x >= -2 " or " [-2, oo)

Find the range:

The range depends on the domain values. Since x >= -2,

y = 1/2 sqrt(-2 + 2) = 0

range: y >= 0 " or " [0, oo)

graph{1/2 sqrt(x + 2) [-10, 10, -5, 5]}