How do you graph #x-y= 3# using a table of values?

1 Answer
Aug 5, 2017

See a solution process below:

Explanation:

First, solve the equation for #y#:

#x - y = 3#

#-color(red)(x) + x - y = -color(red)(x) + 3#

#0 - y = -x + 3#

#-y = -x + 3#

#color(red)(-1) xx -y = color(red)(-1)(-x + 3)#

#y = x - 3#

Next, complete a table of values by substituting a number for #x# and calculating #y#:

enter image source here

Plot the Coordinates on the graph:

graph{((x+5)^2+(y+8)^2-0.125)(x^2+(y+3)^2-0.125)((x-5)^2+(y-2)^2-0.125)=0[-20, 20, -10, 10]}

Now, draw a line through the points to graph the equation for the line.

graph{(x-y-3)((x+5)^2+(y+8)^2-0.125)(x^2+(y+3)^2-0.125)((x-5)^2+(y-2)^2-0.125)=0[-20, 20, -10, 10]}