#y=2x^2-4x-6# is a quadratic equation in standard form:
#y=ax^2+bx+c#,
where:
#a=2#, #b=-4#, #c=-6#
Vertex: maximum or minimum point of a parabola
Since #a>0#, the vertex is the minimum point and the parabola opens upward.
To find the x-coordinate of the vertex , use the formula for the axis of symmetry:
#x=(-b)/(2a)#
#x=(-(-4))/(2*2)#
#x=4/4#
#x=1#
To find the y-coordinate of the vertex , substitute #1# for #x# in the equation and solve for #y#.
#y=2(1)^2-4(1)-6#
#y=2-4-6#
#y=-8#
The vertex is #(1,-8)#. Plot this point.
Y-intercept: the value of #y# when #x=0#
Substitute #0# for #x# and solve for #y#.
#y=2(0)^2-4(0)-6#
#y=-6#
The y-intercept is #(0,-6)#. Plot this point.
X-intercepts: values of #x# when #y=0#
Substitute #0# for #y# and solve for #x#.
#2x^2-4x-6=0# #larr# I switched sides to get the variable on the left-hand side.
Factor out the common factor #2#.
#2(x^2-2x-3)=0#
Find two numbers that when multiplied equal #-3# and when added equal #-2#. The numbers #1# and #-3# meet the requirement.
#2(x+1)(x-3)=0#
Solve each binomial for #0#.
#x+1=0#
#x=-1#
#x-3=0#
#x=3#
The x-intercepts are #(-1,0)# and #(3,0)#. Plot the points.
Additional points: choose values for #x# and solve for #y#.
Additional point 1
#x=2#
#y=2(2)^2-4(2)-6#
#y=8-8-6#
#y=-6#
Additional point 1 is #(2,-6)#. Plot this point.
Additional point 2
#x=-2#
#y=2(-2)^2-4(-2)-6#
#y=8+8-6#
#y=10#
Additional point 2 is #(-2,10)#. Plot this point.
Additional point 3
#x=4#
#y=2(4)^2-4(4)-6#
#y=32-16-6#
#y=10#
Additional point 3 is #(4,10)#. Plot this point.
Plot the points and sketch a parabola through them. Do not connect the dots.
graph{y=2x^2-4x-6 [-12.21, 10.29, -8.505, 2.745]}