How do you graph r=2 cos 2theta?

1 Answer
Jul 15, 2018

Here, the non-negative r in [0. 2].

The period of cos 2theta is (2pi)/2=pi.

In one period theta in [ -pi/2, pi/2 },

r >= 0 for theta in [ - pi/4, pi/4 ] only.

Using,

( x, y ) = r ( cos theta, sin theta ) and r =sqrt (x^2 + y^2 ) >=0,

the Cartesian form of

r = 2 cos 2theta = 2 ( cos^2theta - sin^2theta ) is

( x^2 + y^2 )^1.5 = 2 (x^2 - y^2 ).

The 2-loop Socratic graph is immediate.
graph{(x^2+y^2)^1.5-2(x^2-y^2)=0[-6 6 -3 3]}

Invalid ( r < 0 ) loops are shown below.
graph{(x^2+y^2)^1.5+2(x^2-y^2)=0[-6 6. -3 3]}

Valid and invalid combined graph:
graph{(x^2+y^2)^3-4(x^2-y^2)^2=0[-6 6. -3 3]}