How do you graph r=2 cos 2thetar=2cos2θ?

1 Answer
Jul 15, 2018

Here, the non-negative r in [0. 2]r[0.2].

The period of cos 2thetacos2θ is (2pi)/2=pi2π2=π.

In one period theta in [ -pi/2, pi/2 }θ[π2,π2},

r >= 0r0 for theta in [ - pi/4, pi/4 ]θ[π4,π4] only.

Using,

( x, y ) = r ( cos theta, sin theta )(x,y)=r(cosθ,sinθ) and r =sqrt (x^2 + y^2 ) >=0r=x2+y20,

the Cartesian form of

r = 2 cos 2theta = 2 ( cos^2theta - sin^2theta )r=2cos2θ=2(cos2θsin2θ) is

( x^2 + y^2 )^1.5 = 2 (x^2 - y^2 )(x2+y2)1.5=2(x2y2).

The 2-loop Socratic graph is immediate.
graph{(x^2+y^2)^1.5-2(x^2-y^2)=0[-6 6 -3 3]}

Invalid ( r < 0 ) loops are shown below.
graph{(x^2+y^2)^1.5+2(x^2-y^2)=0[-6 6. -3 3]}

Valid and invalid combined graph:
graph{(x^2+y^2)^3-4(x^2-y^2)^2=0[-6 6. -3 3]}