How do you graph a line using slope-intercept form?

1 Answer
Jan 30, 2015

The equation of a line in explicit form is:

y=mx+q, where m is the slope and q the y-intercept.

It is easier to show the procedure with some example:

y=2: this line is parallel to the x-axis and it passes from the point P(0,2).

x=3: this line is parallel to the y-axis and it passes from the point P(2,0).

y=x+1: this line is parallel to the bisector of the I and III quadrants and it passes from the point P(0,1).

graph{x+1 [-10, 10, -5, 5]}

y=-x-1: this line is parallel to the bisector of the II and IV quadrants and it passes from the point P(0,-1).

graph{-x-1 [-10, 10, -5, 5]}

y=2/3x+1: we have to find the point P(0,1), from this point we have to "count" 3 units to the right and then 2 units to the up, so we can find the point #Q(3,3), then we have to join the two point found.

graph{2/3x+1 [-10, 10, -5, 5]}

y=-1/2x-1: we have to find the point P(0,-1), from this point we have to "count" 2 units to the left and then 2 units to the up, so we can find the point #Q(-2,0), then we have to join the two point found.

graph{-1/2x-1 [-10, 10, -5, 5]}

The difference in these two last examples is the "choice" of the "right" and the "left". Right, if the m is positive; left, if the m is negative.