How do you find the zeros, real and imaginary, of y=x^2-x-9 using the quadratic formula?

1 Answer
Jan 23, 2016

x=(1+-sqrt37)/2

Explanation:

The quadratic formula find the zeroes of a quadratic equation in the form y=ax^2+bx+c through

x=(-b+-sqrt(b^2-4ac))/(2a)

In the given quadratic equation, we know that a=1,b=-1,c=-9. Plugging these into the quadratic formula gives

x=(-(-1)+-sqrt((-1)^2-(4xx-9xx1)))/(2xx1)

x=(1+-sqrt(1-(-36)))/2

x=(1+-sqrt37)/2

Thus, the two times when the function equal 0 are at x=(1+sqrt37)/2 and x=(1-sqrt37)/2.