How do you find the zeros, real and imaginary, of y=x^2-8x-3 using the quadratic formula?

1 Answer
Jun 9, 2016

This function hs 2 real zeros:

x_1=4-sqrt(19)

x_2=4+sqrt(19)

Explanation:

To calculate the zeros of a quadratic function first you calculate the determinant:

y=x^2-8x-3

Delta = b^2-4ac=8^2-4xx1xx(-3)=64+12=76

sqrt(Delta)=sqrt(76)=sqrt(4xx19)=2sqrt(19)

Delta >=0, so the function has 2 real zeros. (If Delta<0 then the zeros would be complex numbers)

x_1=(-b-sqrt(Delta))/(2a)

x_1=(8-2sqrt(19))/(2)=4-sqrt(19)

x_2=(-b+sqrt(Delta))/(2a)

x_1=(8+2sqrt(19))/(2)=4+sqrt(19)