How do you find the zeros, real and imaginary, of y=-x^2+7x+11 using the quadratic formula?

1 Answer
Dec 13, 2017

x=(7+sqrt(93))/2 or (7-sqrt(93))/2

Explanation:

The quadratic formula is:
x=(-b+-sqrt(b^2-4ac))/(2a)

Putting our values in gives us:
x=(-7+-sqrt(7^2-4(-1*11)))/(-2)

=(-7+-sqrt(49-4(-11)))/(-2)

=(-7+-sqrt(49+44))/(-2)

=(-7+-sqrt(93))/-2

=(-7-sqrt(93))/-2 or (-7+sqrt(93))/-2

=(7+sqrt(93))/2 or (7-sqrt(93))/2