How do you find the zeros, real and imaginary, of y= -x^2-6x-4 using the quadratic formula?

1 Answer
Jan 14, 2016

x=-3+-sqrt5

Explanation:

For any quadratic equation y=ax^2+bx+c, the zeroes are found through the formula:

x=(-b+-sqrt(b^2-4ac))/(2a)

For the given quadratic equation:

a=-1
b=-6
c=-4

Plug these into the quadratic formula.

x=(-(-6)+-sqrt((-6)^2-(4xx-1xx-4)))/(2xx-1)

Which simplifies to be

x=(6+-sqrt(36-16))/(-2)

x=(-6+-sqrt20)/2

x=(-6+-2sqrt5)/2

x=-3+-sqrt5