How do you find the zeros, real and imaginary, of y= -x^2-6x-4 using the quadratic formula?
1 Answer
Jan 14, 2016
Explanation:
For any quadratic equation
x=(-b+-sqrt(b^2-4ac))/(2a)
For the given quadratic equation:
a=-1
b=-6
c=-4
Plug these into the quadratic formula.
x=(-(-6)+-sqrt((-6)^2-(4xx-1xx-4)))/(2xx-1)
Which simplifies to be
x=(6+-sqrt(36-16))/(-2)
x=(-6+-sqrt20)/2
x=(-6+-2sqrt5)/2
x=-3+-sqrt5