How do you find the zeros, real and imaginary, of y=x^2-5x+8 using the quadratic formula?

1 Answer
Apr 27, 2018

x = 5/2+sqrt(7)/2i and x = 5/2-sqrt(7)/2i

Explanation:

We have:

y=x^2-5x+8

Using the quadratic formula:

x = (-b +- sqrt(b^2-4ac))/ (2a)

We get the the roots of the equation y=0:

x = (-(-5) +- sqrt((-5)^2-4(1)(8)))/ (2(1))

\ \ = (5 +- sqrt(25-32))/ (2)

\ \ = (5 +- sqrt(-7))/ (2)

\ \ = (5 +- sqrt(7)i)/ (2)

Leading to the two conjugate roots:

x = 5/2+sqrt(7)/2i and x = 5/2-sqrt(7)/2i