How do you find the zeros, real and imaginary, of y=x^2-5x+8 using the quadratic formula?
1 Answer
Apr 27, 2018
x = 5/2+sqrt(7)/2i andx = 5/2-sqrt(7)/2i
Explanation:
We have:
y=x^2-5x+8
Using the quadratic formula:
x = (-b +- sqrt(b^2-4ac))/ (2a)
We get the the roots of the equation
x = (-(-5) +- sqrt((-5)^2-4(1)(8)))/ (2(1))
\ \ = (5 +- sqrt(25-32))/ (2)
\ \ = (5 +- sqrt(-7))/ (2)
\ \ = (5 +- sqrt(7)i)/ (2)
Leading to the two conjugate roots:
x = 5/2+sqrt(7)/2i andx = 5/2-sqrt(7)/2i