How do you find the zeros, real and imaginary, of y= x^2-5x+6 using the quadratic formula?

1 Answer
Jun 18, 2018

x=3, 2

Explanation:

y=x^2-5x+6 is a quadratic equation in standard form:

y=ax^2+bx+c,

where:

a=1, b=-5, c=6

The zeroes are the values for x when y=0.

Substitute 0 for y.

0=x^2-5x+6

Quadratic formula

x=(-b+-sqrt(b^2-4ac))/(2a)

Plug in the known values and solve.

x=(-(-5)+-sqrt((-5)^2-4*1*6))/(2*1)

x=(5+-sqrt1)/2

Simplify.

x=(5+-1)/2

x=(5+1)/2, (5-1)/2

x=6/2, 4/2

Simplify.

x=3, 2

graph{y=x^2-5x+6 [-10, 10, -5, 5]}