How do you find the zeros, real and imaginary, of y=-x^2+4x-42 using the quadratic formula?

1 Answer
Jun 7, 2016

The roots are x_1=2-sqrt(38)i and x_2=2+sqrt(38)i.

Explanation:

Function y=ax^2+bx+c has two roots (zeros) x_{1,2}=(-b+-sqrt(b^2-4ac))/(2a) or one double root if b^2=4ac.

In this case a=-1,b=4,c=-42

So you can blindly plug in those values:

x_{1,2}=(-(4)+-sqrt((4)^2-4(-1)(-42)))/(2(-1))=(-4+-sqrt(16-168))/-2 =(4+-sqrt(-152))/2=(4+-2sqrt(38)i)/2=2+-sqrt(38)i

The roots are x_1=2-sqrt(38)i and x_2=2+sqrt(38)i.

sqrt(38)=6.164414...