How do you find the zeros, real and imaginary, of y=-x^2+4x+12 using the quadratic formula?

2 Answers
Apr 21, 2018

See a solution process below:

Explanation:

We can use the quadratic equation to solve this problem:

The quadratic formula states:

For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0, the values of x which are the solutions to the equation are given by:

x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))

Substituting:

color(red)(-1) for color(red)(a)

color(blue)(4) for color(blue)(b)

color(green)(12) for color(green)(c) gives:

x = (-color(blue)(4) +- sqrt(color(blue)(4)^2 - (4 * color(red)(-1) * color(green)(12))))/(2 * color(red)(-1))

x = (-color(blue)(4) +- sqrt(16 - (-48)))/(-2)

x = (-color(blue)(4) +- sqrt(16 + 48))/(-2)

x = (-color(blue)(4) +- sqrt(64))/(-2)

x = (-color(blue)(4) - 8)/(-2) and x = (-color(blue)(4) + 8)/(-2)

x = (-12)/(-2) and x = (4)/(-2)

x = 6 and x = -2

Apr 21, 2018

f(x)=a x^2+b x +c
x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

Explanation:

f(x)=-x^2+4 x+12=0
a=-1, b=4, c=12

x_{1}=\frac{-4 + \sqrt{4^2-4*(-1)*12}}{-2}=

=\frac{-4 + \sqrt{16+48}}{-2}=(-4 + \sqrt(64))/(-2)=(-4+8)/(-2)=-2

x_{2}=\frac{-4 - \sqrt{4^2-4*(-1)*12}}{-2}=

=\frac{-4 - \sqrt{16+48}}{-2}=(-4 - \sqrt(64))/(-2)=(-4-8)/(-2)=6

In this case all zeros are real.

A polynomial of degree n has n zeros. Imaginary zeros are always in conjugate pairs.
f(x)=x^2+10 x+169
x^2+10 x+169=0
a=1, b=10, c=169
x_{1,2}=\frac{-10\pm\sqrt{10^2-4*1*169}}{2}=
=\frac{-10\pm\sqrt{100-676}}{2}=

=\frac{-10\pm\sqrt{-576}}{2}

Remember: i*i=-1, \sqrt(-1)=i
\sqrt{-576}=\sqrt{-2^6*3^2}=2^3*3*i

x_{1,2}=\frac{-10\pm\sqrt{-576}}{2}=
=\frac{-10\pm 2^3*3*i}{2}=
=-5\pm 2^2*3*i=-5\pm 12*i
=> since complex zeros are always in pairs, a polynomial of degree 2 has or real or complex zeros.

( a polynomial of degree 3 has:
or 3 real zeros
or 1 real and 2 complex zeros.)

For more click here.