How do you find the zeros, real and imaginary, of y=x^2-3x+298 using the quadratic formula?

1 Answer
Mar 9, 2016

x=3/2+ (13sqrt(7))/2 i

x=3/2- (13sqrt(7))/2 i

Explanation:

Standard form:" "y=ax^2+bx+c

Where:" " x=(-b+-sqrt(b^2-4ac))/(2a)

In your case:
a=1
b=-3
c=298

=> x=(-(-3)+-sqrt((-3)^2-4(1)(298)))/(2(1))

=> x=(3+-sqrt(-1183))/2

'~~~~~~~~~~~~~~~~~~~~~
169xx7=1183
169=13^2
'~~~~~~~~~~~~~~~~~~~
=> x=(3+-sqrt(-1xx7xx13^2))/2

=> x=(3+-13sqrt(-1)sqrt7)/2

x=3/2+ (13sqrt(7))/2 i

x=3/2- (13sqrt(7))/2 i