How do you find the zeros, real and imaginary, of y= x^2-3x-16 using the quadratic formula?

2 Answers
Dec 19, 2017

x_1=(3+sqrt73)/2 and x_2=(3-sqrt73)/2

Explanation:

Delta=(-3)^2-4*1*(-16)=73

Hence solution of y, x_1=(3+sqrt73)/2 and x_2=(3-sqrt73)/2

Dec 19, 2017

x = (3 +- sqrt(73))/2

Explanation:

The quadratic formula is x = (-b+- sqrt(b^2 - 4ac))/(2a)

Your equation y = x^2 - 3x - 16 is in standard quadratic form, or in the form of ax^2 + bx + c

So...
a = 1
b = -3
c = -16

Now let's plug them in the quadratic formula:
x = (-(-3) +- sqrt((-3)^2 - 4(1)(-16)))/(2(1))
x = (3 +- sqrt(9 + 64))/2
x = (3 +- sqrt(73))/2