How do you find the zeros, real and imaginary, of y=-x^2 -2x +5 using the quadratic formula?

1 Answer
Nov 5, 2017

The quadratic formula says that the zeros of a quadratic function can be calculated as:

x_1=(-b-sqrt(Delta))/(2a)

and

x_1=(-b+sqrt(Delta))/(2a)

where

Delta=b^2-4ac

Here we have:

Delta=(-2)^2-4*(-1)*5=4+20=24

sqrt(Delta)=sqrt(24)=2sqrt(6)

The discriminant (Delta) is greater than zero, so the function has 2 different real zeros:

x_1=(2-2sqrt(6))/(-2)=-1+sqrt(6)

x_1=(2+2sqrt(6))/(-2)=-1-sqrt(6)