How do you find the zeros, real and imaginary, of y=x^2 +18x +81 using the quadratic formula?

1 Answer
Feb 11, 2017

We have only one zero x=-9.

Explanation:

Zeros of a quadratic function y=f(x)=x^2+18x+81 are those values of x for which y=0.

Using quadratic formula for a function f(x)=ax^2+bx+c,

zeros are (-b+-sqrt(b^2-4ac))/(2a)

and hence for y=f(x)=x^2+18x+81,

zeros are (-18+-sqrt(18^2-4xx1xx81))/(2xx1)

i.e. (-18+-sqrt(324-324))/2=(-8+-0)/2=-9

Check - We can write y=f(x)=x^2+18x+81

= x^2+2xx9xx x+9^2 - and using a^2+2ab+b^2=(a+b)^2

= (x+9)^2

and hence, y=0 only when x=-9

Hence we have only one zero x=-9.