The quadratic formula states:
For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0, the values of x which are the solutions to the equation are given by:
x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))
Substituting:
color(red)(1) for color(red)(a)
color(blue)(12) for color(blue)(b)
color(green)(6) for color(green)(c) gives:
x = (-color(blue)(12) +- sqrt(color(blue)(12)^2 - (4 * color(red)(1) * color(green)(6))))/(2 * color(red)(1))
x = (-color(blue)(12) +- sqrt(144 - 24))/2
x = (-color(blue)(12) +- sqrt(120))/2
x = (-color(blue)(12) +- sqrt(4 * 30))/2
x = (-color(blue)(12) - sqrt(4 * 30))/2 and x = (-color(blue)(12) + sqrt(4 * 30))/2
x = (-color(blue)(12) - sqrt(4)sqrt(30))/2 and x = (-color(blue)(12) + sqrt(4)sqrt(30))/2
x = (-color(blue)(12) - 2sqrt(30))/2 and x = (-color(blue)(12) + 2sqrt(30))/2
x = -color(blue)(12)/2 - (2sqrt(30))/2 and x = -color(blue)(12)/2 + (2sqrt(30))/2
x = -6 - sqrt(30) and x = -6 + sqrt(30)