How do you find the zeros, real and imaginary, of y= -9x^2-2x-3 using the quadratic formula?

1 Answer
Feb 11, 2017

Zeros are 1/9-isqrt26/9 and 1/9+isqrt26/9, two complex conjugate numbers

Explanation:

Zeros of a quadratic function y=f(x)=-9x^2-2x-3 are those values of x for which y=0.

Using quadratic formula for a function f(x)=ax^2+bx+c,

zeros are (-b+-sqrt(b^2-4ac))/(2a)

and hence for y=f(x)=-9x^2-2x-3,

zeros are (-(-2)+-sqrt((-2)^2-4xx(-9)xx(-3)))/(2xx(-9))

i.e. (2+-sqrt(4-108))/(-18)=(2+-sqrt(-104))/18

= (2+-sqrt(2^2xx26xxi^2))/18 - as i^2=-1

= (2+-i2sqrt26)/18=1/9+-isqrt26/9

Hence zeros are 1/9-isqrt26/9 and 1/9+isqrt26/9, two complex conjugate numbers