How do you find the zeros, real and imaginary, of y= -9x^2-28x-3 using the quadratic formula?

1 Answer
Jul 26, 2018

The zeros are x = -3, -1/9.

Explanation:

y = -9x^2 - 28x - 3

This equation is in standard quadratic form, or y = color(red)(a)x^2 + color(blue)(b)x + color(magenta)(c), where color(red)(a = -9), color(blue)(b = -28), and color(magenta)(c = -3).

The quadratic formula is x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - 4color(red)(a)color(magenta)(c)))/(2color(red)(a)).

Plug in the values and solve:
x = (-(color(blue)(-28)) +- sqrt((color(blue)(-28))^2 - 4(color(red)(-9))(color(magenta)(-3))))/(2(color(red)(-9))):

x = (28 +- sqrt(784 - 108))/(-18)

x = (28 +- sqrt(676))/(-18)

x = (28 +- 26)/(-18)

x = (28+26)/(-18), (28-26)/(-18)

x = 54/-18, 2/-18

x = -3, -1/9

Hope this helps!