How do you find the zeros, real and imaginary, of y=-5x^2-x+5y=5x2x+5 using the quadratic formula?

1 Answer
Nov 23, 2015

This equation has 2 real zeros:

x_1=(-1+sqrt(101))/10x1=1+10110

x_2=(-1-sqrt(101))/10x2=110110

Explanation:

To find zeros of quadratic equation you have to calculate Delta first:

Delta=b^2-4ac=(-1)^2-4*(-5)*5=1+100=101

Delta >0 so the formula has 2 real zeros.

x_1=(-b-sqrt(Delta))/(2a)=(1-sqrt(101))/(-10)=(-1+sqrt(101))/10

x_2=(-b+sqrt(Delta))/(2a)=(1+sqrt(101))/(-10)=(-1-sqrt(101))/10

If Delta<0 then there would be 2 imaginary zeros (2 complex conjugate numbers)

If Delta=0 there would be a single real zero