How do you find the zeros, real and imaginary, of y=-5x^2-2x-9 using the quadratic formula?

1 Answer
Jun 9, 2017

See a solution process below:

Explanation:

From: http://www.purplemath.com/modules/quadform.htm

The quadratic formula states:

For ax^2 + bx + c = 0, the values of x which are the solutions to the equation are given by:

x = (-b +- sqrt(b^2 - 4ac))/(2a)

Substituting -5 for a; -2 for b and -9 for c gives:

x = (-(-2) +- sqrt((-2)^2 - (4 * -5 * -9)))/(2 * -5)

x = (2 +- sqrt(4 - 180))/(-10)

x = (2 +- sqrt(-176))/(-10)

x = (2 +- sqrt(16 * -11))/(-10)

x = (2 +- (sqrt(16) * sqrt(-11)))/(-10)

x = (2 +- 4sqrt(-11))/(-10)

x = -(1 +- 2sqrt(-11))/5