How do you find the zeros, real and imaginary, of y=- 5x^2+15x+10 using the quadratic formula?

1 Answer
Feb 17, 2016

The answers are: x=(3 pm sqrt(17))/2, which are approximately -0.56 and 3.56.

Explanation:

The quadratic formula says the zeros of y=ax^2+bx+c are x=(-b pm sqrt(b^2-4ac))/(2a).

For this example, a=-5, b=15, and c=10, so we get:

x=(-15 pm sqrt( (15)^2-4 * (-5) * 10) )/(2*(-5)) =(15 pm sqrt(225+200))/10

=(15 pm sqrt(425))/10=(15 pm sqrt(25)sqrt(17))/10

=(15 pm 5sqrt(17))/10=(3 pm sqrt(17))/2