How do you find the zeros, real and imaginary, of y=-5x^2-13x-4 using the quadratic formula?

1 Answer
Jul 9, 2017

See a solution process below:

Explanation:

The quadratic formula states:

For ax^2 + bx + c = 0, the values of x which are the solutions to the equation are given by:

x = (-b +- sqrt(b^2 - 4ac))/(2a)

Substituting -5 for a; -13 for b and -4 for c gives:

x = (-(-13) +- sqrt((-13)^2 - (4 * -5 * -4)))/(2 * -5)

x = (13 +- sqrt(169 - 80))/(-10)

x = (13 +- sqrt(89))/(-10)

x = -13/10 +- -sqrt(89)/10

x = -13/10 + sqrt(89)/10 and x = -13/10 - sqrt(89)/10