How do you find the zeros, real and imaginary, of y=-4x^2-4x-16 using the quadratic formula?

1 Answer
Jul 8, 2017

-(1+-isqrt(15))/(2)

Explanation:

The standard form of a quadratic equation is y=ax^2+bx+c. Based on this, you know that a=-4, b=-4, and c=-16.

The quadratic formula is x=(-b+-sqrt(b^2-4ac))/(2a). Substitute the values above into the formula.

x=(-b+-sqrt(b^2-4ac))/(2a)

x=(-(-4)+-sqrt((-4)^2-4(-4)(-16)))/(2(-4))

x=(4+-sqrt(-240))/(-8)

x=(4+-4isqrt(15))/(-8)

x=(1+-isqrt(15))/(-2) -> -(1+-isqrt(15))/(2)

There are no real zeros.