How do you find the zeros, real and imaginary, of y=3x^2-6x+9y=3x26x+9 using the quadratic formula?

1 Answer

the zeros are
x_1=1+sqrt2 ix1=1+2i
x_2=1-sqrt2 ix2=12i

Explanation:

In order to solve for the zeros, we equate the given equation to zero.

Let y=0
3x^2-6x+9=03x26x+9=0
divide both sides of the equation by 3
x^2-2x+3=0x22x+3=0
We now take note of the numerical coefficients of each term.

1*x^2+(-2)*x+3=01x2+(2)x+3=0

The quadratic equation is given by
ax^2+bx+c=0ax2+bx+c=0
We can see clearly that a=1a=1 and b=-2b=2 and c=3c=3

The quadratic formula for solving the unknown x is given by

x=(-b+-sqrt(b^2-4*a*c))/(2a)x=b±b24ac2a

direct substitution

x=(-(-2)+-sqrt((-2)^2-4*1*3))/(2*1)x=(2)±(2)241321

x=(2+-sqrt(4-12))/2x=2±4122

x=(2+-sqrt(-8))/2x=2±82

x=(2+-2sqrt2i)/2x=2±22i2

x=1+-sqrt2 ix=1±2i

The zeros are
x_1=1+sqrt2 ix1=1+2i
x_2=1-sqrt2 ix2=12i

Check at x_1=1+sqrt2 ix1=1+2i using the original equation

3x^2-6x+9=03x26x+9=0
3(1+sqrt2 i)^2-6(1+sqrt2 i)+9=03(1+2i)26(1+2i)+9=0
3(1+2sqrt2i+(sqrt2)^2*i^2)-6-6sqrt2 i+9=03(1+22i+(2)2i2)662i+9=0
3(1+2sqrt2i+(2)*(-1))-6-6sqrt2 i+9=03(1+22i+(2)(1))662i+9=0

3(1+2sqrt2i-2)-6-6sqrt2 i+9=03(1+22i2)662i+9=0

3(2sqrt2i-1)-6-6sqrt2 i+9=03(22i1)662i+9=0

6sqrt2i-3-6-6sqrt2 i+9=062i3662i+9=0

0=00=0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Check at x_1=1-sqrt2 ix1=12i using the original equation

3x^2-6x+9=03x26x+9=0
3(1-sqrt2 i)^2-6(1-sqrt2 i)+9=03(12i)26(12i)+9=0
3(1-2sqrt2i+(-sqrt2)^2*i^2)-6+6sqrt2 i+9=03(122i+(2)2i2)6+62i+9=0
3(1-2sqrt2i+(2)*(-1))-6+6sqrt2 i+9=03(122i+(2)(1))6+62i+9=0

3(1-2sqrt2i-2)-6+6sqrt2 i+9=03(122i2)6+62i+9=0

3(-2sqrt2i-1)-6+6sqrt2 i+9=03(22i1)6+62i+9=0

-6sqrt2i-3-6+6sqrt2 i+9=062i36+62i+9=0

0=00=0

God bless...I hope the explanation is useful.