To find the zeroes we set y to 0 giving:
0 = -3x^2 - 2x - 18
We can now use the quadratic equation to solve this problem:
The quadratic formula states:
For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0, the values of x which are the solutions to the equation are given by:
x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))
Substituting:
color(red)(-3) for color(red)(a)
color(blue)(-2) for color(blue)(b)
color(green)(-18) for color(green)(c) gives:
x = (-color(blue)((-2)) +- sqrt(color(blue)((-2))^2 - (4 * color(red)(-3) * color(green)(-18))))/(2 * color(red)(-3))
x = (2 +- sqrt(4 - (216)))/(-6)
x = (2 +- sqrt(-212))/(-6)
x = (2 +- sqrt(4 * -53))/(-6)
x = (2 +- sqrt(4)sqrt(-53))/(-6)
x = (2 +- 2sqrt(-53))/(-6)
x = (1 +- 1sqrt(-53))/(-3)
x = (1 +- sqrt(-53))/(-3)