How do you find the zeros, real and imaginary, of y= -3x^2-2x-18 using the quadratic formula?

1 Answer
Aug 21, 2017

See a solution process below:

Explanation:

To find the zeroes we set y to 0 giving:

0 = -3x^2 - 2x - 18

We can now use the quadratic equation to solve this problem:

The quadratic formula states:

For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0, the values of x which are the solutions to the equation are given by:

x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))

Substituting:

color(red)(-3) for color(red)(a)

color(blue)(-2) for color(blue)(b)

color(green)(-18) for color(green)(c) gives:

x = (-color(blue)((-2)) +- sqrt(color(blue)((-2))^2 - (4 * color(red)(-3) * color(green)(-18))))/(2 * color(red)(-3))

x = (2 +- sqrt(4 - (216)))/(-6)

x = (2 +- sqrt(-212))/(-6)

x = (2 +- sqrt(4 * -53))/(-6)

x = (2 +- sqrt(4)sqrt(-53))/(-6)

x = (2 +- 2sqrt(-53))/(-6)

x = (1 +- 1sqrt(-53))/(-3)

x = (1 +- sqrt(-53))/(-3)