How do you find the zeros, real and imaginary, of y=-2x^2+x-3 using the quadratic formula?

1 Answer
May 18, 2016

Zeros of y=-2x^2+x-3 are

-1/4+isqrt23/4 and -1/4-isqrt23/4

Explanation:

If y=ax^2+bx+c, quadratic formula states that zeros are given by

(-b+-sqrt(b^2-4ac))/(2a)

Hence, in y=-2x^2+x-3, zeros are

(-1+-sqrt(1^2-4*(-2)*(-3)))/(2*2)

= (-1+-sqrt(1-24))/(2*2)

or (-1+-sqrt(-23))/4=-1/4+-isqrt23/4