How do you find the zeros, real and imaginary, of y=-2x^2-9x+5y=2x29x+5 using the quadratic formula?

1 Answer
Apr 22, 2018

Zeros are real and x=0.5, x= -5x=0.5,x=5

Explanation:

y= -2 x^2-9 x +5y=2x29x+5

Comparing with standard quadratic equation ax^2+bx+c=0ax2+bx+c=0

a=-2 ,b=-9 ,c=5a=2,b=9,c=5. Discriminant D= b^2-4 a cD=b24ac or

D=81+40 =121D=81+40=121 , discriminant is positive, we get two real

solutions. Quadratic formula: x= (-b+-sqrtD)/(2a) x=b±D2aor

x= (9+-sqrt 121)/(-4) = (9 +- 11)/-4 :. x= 20/-4= -5 or

x=(-2)/-4 = 0.5 :. Zeros are real and x=0.5, x= -5 [Ans]