To find the zeros of a quadratic equation you set the quadratic equal to 0:
0 = -2x^2 - 19x + 42
We can now use the quadratic equation to solve this problem:
The quadratic formula states:
For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0, the values of x which are the solutions to the equation are given by:
x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))
Substituting:
color(red)(-2) for color(red)(a)
color(blue)(-19) for color(blue)(b)
color(green)(42) for color(green)(c) gives:
x = (-color(blue)((-19)) +- sqrt(color(blue)((-19))^2 - (4 * color(red)(-2) * color(green)(42))))/(2 * color(red)(-2))
x = (color(blue)(19) +- sqrt(361 - (-336)))/-4
x = (color(blue)(19) +- sqrt(361 + 336))/-4
x = (color(blue)(19) +- sqrt(697))/-4
x = -(color(blue)(19) +- sqrt(697))/4