How do you find the zeros, real and imaginary, of y=-2x^2-19x+42 using the quadratic formula?

1 Answer
Oct 21, 2017

See a solution process below:

Explanation:

To find the zeros of a quadratic equation you set the quadratic equal to 0:

0 = -2x^2 - 19x + 42

We can now use the quadratic equation to solve this problem:

The quadratic formula states:

For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0, the values of x which are the solutions to the equation are given by:

x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))

Substituting:

color(red)(-2) for color(red)(a)

color(blue)(-19) for color(blue)(b)

color(green)(42) for color(green)(c) gives:

x = (-color(blue)((-19)) +- sqrt(color(blue)((-19))^2 - (4 * color(red)(-2) * color(green)(42))))/(2 * color(red)(-2))

x = (color(blue)(19) +- sqrt(361 - (-336)))/-4

x = (color(blue)(19) +- sqrt(361 + 336))/-4

x = (color(blue)(19) +- sqrt(697))/-4

x = -(color(blue)(19) +- sqrt(697))/4