How do you find the zeros, real and imaginary, of y=13x^2-8x-9 using the quadratic formula?

1 Answer
Dec 7, 2015

x~~ 0*706 " or " 0*090 to 3 decimal places

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Exact values:

x = (8+ sqrt(107))/26 " or " (8- sqrt(107))/26

Thus: x in RR

Explanation:

To be mathematically correct your question should read as:

"What are the values of x if y=0. Find both real and any complex number solutions."

Using standard form: ax^2+bx+c=0

where x = (-b+-sqrt(b^2-4ac))/(2a)

a=13
b=-8
c=-9

Giving: color(white)(...)x=(8+-sqrt(8^2-4(13)(-9)))/(2(13))

color(white)(...)x=(8+-sqrt(64+43))/(26)

color(white)(...)x=(8+-sqrt(107))/(26)

107 is a prime number so it may not be split into factors

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you want approximate solutions we have:

x~~ 0*706 " or " 0*090 to 3 decimal places

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Exact values:

x = (8+ sqrt(107))/26 " or " (8- sqrt(107))/26

Thus: x in RR