The quadratic formula states:
For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0, the values of x which are the solutions to the equation are given by:
x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))
Substituting:
color(red)(-1) for color(red)(a)
color(blue)(32) for color(blue)(b)
color(green)(19) for color(green)(c) gives:
x = (-color(blue)(32) +- sqrt(color(blue)(32)^2 - (4 * color(red)(-1) * color(green)(19))))/(2 * color(red)(-1))
x = (-color(blue)(32) +- sqrt(1024 - (-76)))/-2
x = (-color(blue)(32) +- sqrt(1024 + 76))/-2
x = (-color(blue)(32) +- sqrt(1100))/-2
x = (-color(blue)(32) - sqrt(100 * 11))/-2 and x = (-color(blue)(32) + sqrt(100 * 11))/-2
x = (-color(blue)(32) - sqrt(100)sqrt(11))/-2 and x = (-color(blue)(32) + sqrt(100)sqrt(11))/-2
x = (-color(blue)(32) - 10sqrt(11))/-2 and x = (-color(blue)(32) + 10sqrt(11))/-2
x = (-color(blue)(32))/-2 - (10sqrt(11))/-2 and x = (-color(blue)(32))/-2 + (10sqrt(11))/-2
x = 16 + 5sqrt(11) and x = 16 - 5sqrt(11)