How do you find the zeros of y = -x^2 - 1/11x + 1/7 using the quadratic formula?

1 Answer
Aug 3, 2016

Zeros are 7/22-7/2sqrt(491/847) and 7/22+7/2sqrt(491/847)

Explanation:

Quadratic formula gives the zeros of y=ax^2+bx+c as x=(-b+-sqrt(b^2-4ac))/(2a).

Hence zeros of y=-x^2-1/11x+1/7 are

x=(-(-1/11)+-sqrt((-1/11)^2-4(-1)(1/7)))/(2(1/7))

= ((1/11)+-sqrt(1/121+4/7))/(2/7)

= (1/11+-sqrt((7+484)/847))xx7/2

= 7/22+-7/2sqrt(491/847)

Hence zeros are 7/22-7/2sqrt(491/847) and 7/22+7/2sqrt(491/847)