How do you find the zeros of y = -2x^2 - 3x +12 using the quadratic formula?

1 Answer
Dec 2, 2015

Set a, b, and c appropriately and apply the quadratic formula to obtain the zeros at x = (-3+sqrt(105))/4 and x = (-3-sqrt(105))/4

Explanation:

The quadratic formula states that

ax^2 + bx + c = 0 => x = (-b+-sqrt(b^2-4ac))/(2a)

In this case, we have
a = -2
b = -3
c = 12

Thus the zeros, that is, the solutions to -2x^2 - 3x + 12 = 0 are

x = (-(-3)+-sqrt((-3)^2-4(-2)(12)))/(2(-2))

=(3 +-sqrt(9 + 96))/(-4)

= -(3+-sqrt(105))/4

= (-3+-sqrt(105))/4

So
x = (-3+sqrt(105))/4
or
x = (-3-sqrt(105))/4