One way to find the #x# and #y#-intercepts is to set one variable equal to #0# and solve for the other variable.
x-intercept:
Set #y = 0# giving:
#-5x + (10 * 0) = 20#
#-5x + 0 = 20#
#-5x = 20#
#(-5x)/color(red)(-5) = 20/color(red)(-5)#
#(color(red)(cancel(color(black)(-5)))x)/cancel(color(red)(-5)) = -4#
#x = -4#
The #x#-intercept is: #-4# or #(-4, 0)#
y-intercept:
Set #x = 0# giving:
#(-5 * 0) + 10y = 20#
#0 + 10y = 20#
#10y = 20#
#(10y)/color(red)(10) = 20/color(red)(10)#
#(color(red)(cancel(color(black)(10)))y)/cancel(color(red)(10)) = 2#
#y = 2#
The #y#-intercept is: #2# or #(0, 2)#