#f(x)=-x^2+3x+10#
Substitute #y# for #f(x)#.
#y=-x^2+3x+10# is in the form #ax^2+bx+c#, where #a=-1, b=3, c=10#.
To find the value of #x#, use the equation #x=(-b)/(2a)#.
#x=(-3)/(2*-1)#
#x=(-3)/(-2)# =
#x=3/2=1 1/2#
To find the #y# value, substitute #3/2# for #x# in the equation #y=x^2+3x+10#.
#y=-(3/2)^2+3(3/2)+10# =
#y=-9/4+9/2+10#
The common denominator is #4#. Multiply the terms on the right side by the fraction that will give each term a denominator of #4#.
#y=-9/4+9/2*2/2+10*4/4#
#y=-9/4+18/4+40/4# =
#y=49/4=12 1/4#.