How do you find the value of the other five trigonometric functions, given tan x=4/11, sec x< 0? Trigonometry Right Triangles Relating Trigonometric Functions 1 Answer Sasha P. Oct 10, 2015 #sinx=-2/sqrt15, cosx=-sqrt(11/15)# #tan x=4/11, cotx=11/4# #secx=-sqrt(15/11), cscx=-sqrt15/2# Explanation: #sec^2x=tan^2x+1# #sec^2x=4/11+1=4/11+11/11=15/11# #secx=sqrt(15/11) vv secx=-sqrt(15/11)# So, #secx=-sqrt(15/11)# #cosx=1/secx# #cosx=-sqrt(11/15)# #sin^2x+cos^2x=1 => sin^2x=1-cos^2x# #sin^2x=1-11/15=4/15# #sinx=-2/sqrt15 vv sinx=2/sqrt15# Since #tanx=4/11=sinx/cosx# and #cosx<0# it must hold #sinx<0# So, #sinx=-2/sqrt15# #cotx=1/tanx=11/4# #cscx=1/sinx=-sqrt15/2# Finally: #sinx=-2/sqrt15, cosx=-sqrt(11/15)# #tan x=4/11, cotx=11/4# #secx=-sqrt(15/11), cscx=-sqrt15/2# Answer link Related questions What does it mean to find the sign of a trigonometric function and how do you find it? What are the reciprocal identities of trigonometric functions? What are the quotient identities for a trigonometric functions? What are the cofunction identities and reflection properties for trigonometric functions? What is the pythagorean identity? If #sec theta = 4#, how do you use the reciprocal identity to find #cos theta#? How do you find the domain and range of sine, cosine, and tangent? What quadrant does #cot 325^@# lie in and what is the sign? How do you use use quotient identities to explain why the tangent and cotangent function have... How do you show that #1+tan^2 theta = sec ^2 theta#? See all questions in Relating Trigonometric Functions Impact of this question 6860 views around the world You can reuse this answer Creative Commons License